Supporting students with sensory processing challenges

Evidence summary

This document summaries the Rapid Evidence Assessment completed for the Department of Education by:

- Dr Katy Unwin
- Dr Kylie Wales
- Ms Tennille Johnson
- Professor Alison Lane.

Preferred citation:

Department of Education. (2023). *Evidence Summary: Supporting students with sensory processing challenges.* State of Queensland.

Contents

What we did and why	4
What we found	9
Alternative seating	10
Auditory practices	15
Cognitive interventions	
Multi-sensory environments	20
Physical activity breaks and yoga	23
Sensory-based interventions	24
Visual strategies	27
Weighted products	28
Reference List	30
Appendix A: Summary of study findings	34

What we did and why

Background

The Queensland Department of Education (department) supports students' wellbeing, engagement and achievement in their education. Students who experience sensory processing challenges including some students with autism, intellectual disability, or other disability, are supported by school teams to access, participate and achieve at school.

In 2011, the department published the *Best Practice Guidelines for Department of Education and Training Occupational Therapists: Supporting Students with Sensory Processing Challenges* (the guidelines). Since then, more research and interventions have become available.

Sensory-based interventions continue to gain popularity, but remain controversial. While there is substantial research literature on sensory-based interventions, conclusive evidence to inform decision-making often isn't available.

It is important to be aware that some interventions may be harmful or ineffective, or are not appropriate to use at school.

Our aim is to support schools to consider and use evidence-informed practices that assist students to achieve the best outcomes from their education.

This evidence summary is part of a suite of resources for staff of the department who support students with sensory processing challenges to succeed and overcome the barriers they experience.

What we did

A Rapid Evidence Assessment (REA) was completed to review the literature related to sensory processing challenges in school settings. This evidence summary provides an overview of the REA, which aimed to update and build on our understanding of the evidence published since the guidelines were developed in 2011¹.

¹State of Queensland, Department of Education. (2011). Best Practice Guidelines for Department of Education and Training Occupational Therapists – Supporting Students with Sensory Processing Challenges (department employees only)

Who did the research

The REA was completed by researchers at La Trobe University and The University of Newcastle. Dr Katy Unwin, Dr Kylie Wales, Ms Tennille Johnson and Professor Alison Lane worked with a team of people from the department to determine the scope of the research.

Research question

What school-based interventions (including assessments) are effective in improving school access, participation and achievement for school students with sensory processing challenges, school staff and school communities?

How we did the research

REA uses a similar process to a systematic review. REA uses more structured and rigorous search and quality assessment of the evidence than a literature review. However, the process is faster and less thorough than a full systematic review. REA is useful for getting an overview of the evidence on a topic.

The search strategy in this REA was broad and considered many factors. After initial literature searches found only a small number of articles, additional searches were done to find more articles relevant to the research question.

All articles were assessed for quality. We did not use multiple, independent reviewers to screen and review full-text articles.

Articles included in the REA covered a range of functional concerns relating to sensory processing challenges, and practices that may be used in schools.

Search strategy

Search terms were based on our research question:

What school-based interventions (including assessments) are effective in improving school access, participation and achievement for school students with sensory processing challenges, school staff and school communities?

The PICOC structure (Figure A) was used to ensure that all aspects of the research question were captured in the search strategy.

Figure A: Search strategy mapped out using PICOC

Population	School-aged children (4-20 years), school staff, schools/school communities
Intervention	Interventions to address sensory processing challenges or in children with sensory challenges, appropriate for use in schools
Comparison	Usual/nil
Outcome	Improved school access, school participation and school achievement
Context	School settings including early childhood, primary and high schools

For studies to be included in the REA:

- more than 80% of participants had to be aged 4-20 years
- the intervention had to be appropriate for implementation in a school
- the intervention needed to be used for participants with sensory processing challenges, or intended to address sensory processing challenges
- outcomes had to be:
 - o from an intervention with students
 - o related to improved school access, school participation or school achievement
 - o for students, staff or school community
- needed to be published after 2010.

Studies were excluded when they:

- used a single case design and presented only narrative data
- presented only qualitative data
- were a conference abstract, commentary, or presented in a book/book chapter, or
- were not available in English or as a full text article.

Studies

Sixty-two articles were included in the final review. Over a quarter of the studies used a controlled design. That is, a design that considered and attempted to manage factors that may also impact on student outcomes

Included studies were conducted with a variety of student groups, including students with autism (34), ADHD/attentional issues (6), sensory processing difficulties (12), emotional/behavioural concerns (2), intellectual and developmental disability (9), learning disability (4), and no diagnosis/typically developing (10) (Appendix A).

Figure B: Article screening

Challenges for interpreting the results

Findings discussed in the REA should not be interpreted as the only evidence that specific interventions are effective or not effective for any child. Instead, the REA presents the results of studies examining questions for specific populations in defined contexts. The findings presented can be used to inform clinical decision-making based on the circumstances, in collaboration with the school team, student and parent/carer.

The REA does not consider evidence from practice, only peer-reviewed literature sources.

While our inclusion and exclusion criteria give us confidence in our findings (due to the quality and relevance of the studies examined), not all practices used in schools to support students with sensory processing challenges are reflected in our results.

There were no studies able to be included in the REA that addressed the instructional environment as a practice focus. The REA also did not include any empirical studies on some contemporary approaches such as The Zones of Regulation programme.

While overall study quality in this area has improved in the last 10 years, most of the research still has flaws for example, small sample sizes, inconsistent dosing regimens and practice protocols, and poorly defined populations of interest.

Another limitation in the current published literature is the lack of standardised terminology and the inconsistency of outcomes measurement. This limits our ability to compare the results of studies and generalise findings to the school context.

Evidence ratings

Practices examined by the studies included in the REA have been rated on their effectiveness. The ratings consider the reported outcomes and any limitations in study design. The following ratings were applied:

- Effective: The study results reported positive outcomes that support the practice in the parameters of the study. The results were statistically significant.
- **Inconclusive**: The study results were inconclusive. The study reported mixed results or had positive outcomes that were limited due to study design or bias.
- Ineffective: The study did not report a positive outcome.

Important notes:

- The evidence ratings do not mean the practice should be used in a school setting. A guide is being developed for this purpose, and will accompany this resource.
- Specialist support staff and teachers should apply careful reasoning when deciding what strategies will be used to support students. They must review their strategies regularly and carefully evaluate outcomes.
- The inclusion criteria requiring quality study designs limited the findings in the REA.

What we found

Based on the outcomes examined in the REA, it is clear that any strategy used to support students must be individualised and evaluated carefully against the intended outcomes.

A number of studies advocated that a school's environments should be adjusted to support students' learning^{9,15,31,35,55}.

Strategies/interventions that *may be effective* include:

- sound amplification systems for autistic students with identified auditory processing difficulties to address listening-related stress;
- alternative seating in some school settings for some attentional concerns associated with sensory processing challenges (though **not** hyperactivity or oppositional defiance);
- stability balls to enhance physical activity, learning and engagement, and reduce anxiety; and
- multisensory environments to reduce distress and challenging behaviours and improve student wellbeing.

Strategies/interventions that are not recommended at this time:

- weighted vests used in school settings as a practice to improve classroom behaviour or attention; and
- multisensory environments to reduce the use of restraint and seclusion (though these may be effective in reducing distress, anxiety and challenging behaviours).

People planning to, or using any practice to support students with sensory challenges need to:

- clearly understand sensory processing and related challenges;
- scrutinise interventions and their appropriateness based on the best available evidence, student factors, context (e.g. school, classroom, etc.), and financial resources;
- generate a specific hypothesis for implementing the intervention/s; and
- use reliable and valid measures to track functional outcomes.

Individual evaluation is essential to determine the benefit of any practice for a student.

Navigation

Section	Included interventions/practices		
Alternative seating	 Dynamic seating (not specified) Air/Seat/Therapy cushions Stability/Sensory balls Stability/Sensory/Therapy ball chair Floor seating Special seating (not specified, may include T-stool or cube chair) 		
Auditory adjustments	Auditory modifications		
	 Auditory integration-based approaches (e.g. filtered sound) Signal-to-noise ratio Sound-absorbing material Background noise Sound attenuation Earmuffs In-ear and over-ear headphones Noise cancelling headphones FM system/ Remote microphone systems/devices Soundfield amplification 		
	Auditory training programs		
	 Auditory integration training Berard Auditory Training Covert audio coaching The Listening Program Integrated Listening Systems (iLs) 		
Cognitive interventions	Modified Alert ProgramCognitive behavioural therapy (CBT)		
Multi-sensory environments (MSEs)	Multi-sensory environmentMagic roomSensory room		
Physical activity breaks and yoga	Physical activity breaksSlow, linear swingingYoga		
Sensory-based	Deep Pressure Proprioceptive Technique (DPPT)		
interventions	Sensory Diets		
	 Comprehensive sensory integration-based sensory diet Sensorimotor interventions Sensory motor activities chosen based on behaviours Sensory Activity Schedule (SAS) Brainworks program 		
Visual strategies	 Adjusting lighting Using halogen lighting No visual displays 		
Weighted products	Weighted vests		

Alternative seating

Alternative seating refers to using different types of seating equipment (e.g., seat cushions, therapy balls, stability balls, bean bag chairs) that support students' need for movement or body sensation.

Alternative seating can be used for different purposes for example, as an antecedent manipulation to affect behaviour such as sitting in a seat¹⁰. Alternative seating may be used as a stand-alone intervention, or within the context of a sensory diet.

The REA considered the results of 15 studies that investigated the use of alternative seating.

Overall, evidence regarding alternative seating was *inconclusive*.

Based on the available evidence, it is unclear whether using alternative seating enhances task engagement, attention or in-seat behaviour in individuals with autism^{6, 15, 36}.

Results from studies that examined different seating apparatuses (e.g., therapy ball, cushion) cannot be compared.

When studies measured similar outcomes, the results were not necessarily consistent. For example, Schilling and Schwartz (2004) reported substantial improvements in in-seat behaviours and engagement across all participants when seated on therapy balls. However, Umeda and Deitz (2011) reported that the use of therapy cushions did not result in substantial change in either in-seat or on-task behaviours.

Practice considerations discussed in the literature

Alternative seating should only be considered after a thorough understanding of need and review of other evidence-informed strategies. Ongoing monitoring of the effect of the alternative seating on educational goals is essential.

Alternative seating *may* be an effective strategy in some school settings for some attentional concerns associated with sensory processing challenges or to temporarily alleviate mood symptoms.

Alternative seating is *not recommended* to manage behavioural concerns such as hyperactivity and oppositional defiance.

Inclusive education considerations

- Simple and time efficient intervention for teachers to implement^{18, 37}
- Stability balls do not appear to detract from the instructional atmosphere in a classroom setting¹⁷
- Beneficial effects may not be as large if only one or two students in a classroom use a ball, because ball use is not part of the classroom culture or rule structure¹⁸
- Alternative seating is generally socially valid^{10,42}
- One study indicated that using alternative seating does not appear to have negative effect for writing⁴⁵

Safety issues and contraindications

 Stability balls are a safety concern for students who do not have spatial skills and adequate core strength³²

Trial considerations

- School teams should consider the cost-benefit of stability balls as a classroom intervention in comparison to traditional classroom seating prior to implementation⁴²
- Students accumulate light physical activity when using stability balls¹⁷
- Therapy cushions may be less effective than balls as a form of alternative seating. They may not provide sufficient postural demands or sensory input to produce behavioural changes⁵²
- One study reported that replacing chairs with stability balls improved Year 6 students' math scores compared to 5-minute activity breaks and no physical activity during math class³⁷.

Summary of results

Intervention	Evidence	Outcomes
Dynamic seating (not specified)	Inconclusive for:	• improved classroom behaviour ³⁶
Air/seat/therapy cushions	Inconclusive for:	 in-seat behaviour³⁵ on-task behaviour^{15, 35} However, one study determined therapy cushions (inflatable discs) are ineffective for improving in-seat and on-task behaviours⁵²
Stability/sensory balls	Effective for:	 improving student learning when used for continuous low-intensity posturing and positioning³⁷
	Inconclusive for:	 on-task behaviour^{25, 45} academic productivity³⁴ overall performance⁴² in-seat behaviour^{32, 45} (or ineffective²⁵)
	Ineffective for:	classroom behaviour ^{17, 34, 42}
Stability/sensory/therapy ball chair	Effective for:	 improved attention span²² temporarily alleviated anxiety/ depressive symptoms²²
	Inconclusive for:	 in-seat behaviour^{10, 18, 35} on-task behaviour^{10, 15, 18, 35}
	Ineffective for:	 classroom behaviour¹⁷ hyperactivity²² oppositional defiant behaviours²²
Floor seating	Ineffective for:	 enhancing attention and in-seat behaviour⁶
Special seating (not specified, may include T-stool or cube chair)	Ineffective for:	 attention⁶ in-seat behaviour⁶

- Understanding students' priorities and having a range of chair choices available might help in achieving more positive results, especially for on-task behaviour³⁶.
- Some studies showed similar patterns for on task and out-of-seat behaviour while students were seated on traditional chairs and stability balls⁴².
- In two studies, results indicated increases for both in-seat and on-task behaviour with the stability ball chair compared to a standard table chair, however, results varied across participants^{10, 32}.
- One study showed sitting on stability balls improved attention span and temporarily eased anxiety or depressions symptoms among Year 2 students. However, these participants had low baseline scores for hyperactivity, oppositional defiant behaviour, anxiety or depression and may not be

typical of students whose teachers are seeking support. Assessors in this study were not blinded²². This may mean these findings don't apply to other classrooms.

Auditory practices

Auditory practices focus on helping a child respond to salient auditory stimuli. Studies with auditory-based interventions included auditory integration training, covert coaching, noise-cancelling headphones, sound-absorbing material, sound amplification systems, and modifications to signal-to-noise ratio.

The REA considered the results of 17 studies that examined auditory practices.

Auditory practices were divided into two sub-categories

- *auditory modifications*, where modifications were made to the sound environment to improve access to sound stimuli; and
- *auditory training*, where listening and sound processing skills were directly addressed. Interventions reviewed included auditory integration training, listening therapy, noise cancellation headphones and sound amplification systems.

More methodologically rigorous studies are needed to further explore the potential benefits of auditory practices.

Overall, the evidence on auditory practices for children with sensory processing challenges and autism is *inconclusive*, with limited evidence of positive effects on discrete skill domains.

Practice considerations discussed in the literature

Safety issues and contraindications

• Adverse effects of long-term earmuff and headphone use have not been studied²⁹.

Trial considerations

- There is controversy in the literature regarding the effectiveness of Auditory integration training in reducing auditory hypersensitivity¹.
- Providing earmuffs and noise cancelling headphones are possible ways to reduce auditory sensory stimuli²⁹.
- Students may refuse to wear devices such as headphones and earmuffs²⁹.

Auditory modifications

Summary of results

Intervention	Evidence	Outcomes
Auditory integration-based approaches (e.g. filtered sound)	Ineffective on:	language outcomes ⁵⁸
Signal-to-noise ratio	Inconclusive for:	improved classroom performance in autistic children ⁵⁴
Sound-absorbing material	Inconclusive for:	improving classroom behaviours ³¹
Background noise	Inconclusive:	effects for on-task behaviour ¹⁵
Sound attenuation	Inconclusive for:	effects for on-task behaviour ¹⁵
Earmuffs	Effective for:	reducing responses to auditory stimuli ²⁹
In-ear and over-ear headphones	Inconclusive for:	reducing sympathetic activation ⁴⁴
Noise cancelling headphones	Ineffective for:	reducing responses to auditory stimuli ²⁹
FM system/ Remote microphone systems/devices	Effective for:	improving speech perception in everyday listening conditions ⁴⁷
		 reducing listening-related stress in one-on- one and group listening contexts⁴⁷
		enhancing speech recognition in noise ⁴⁸
		 on-task behaviours⁴⁸
		 improved listening behaviours⁴⁸
	Inconclusive for:	 improving listening, communication and social interaction⁴⁶
		 reducing physiological stress⁴⁶
Soundfield amplification	Inconclusive for:	 improved teacher-rated listening behaviour and phonological processing ⁶¹

Auditory training

Summary of results

Intervention	Evidence	Outcomes
Auditory training programs	Inconclusive for:	improving educational participation ⁵⁶
(overall)		sensory processing ⁵⁶
Auditory integration training	Effective for	social awareness ¹
	improving:	 social cognition¹
		 social communication¹
		• speech ¹
		 sociability¹
Berard Auditory Training	Effective* for:	improving behaviours including social skills ¹²
Covert audio coaching	Inconclusive for:	 increasing attending behaviour in autistic children in the classroom ¹⁴
The Listening Program	Inconclusive for	auditory sensitivity ^{23, 24}
	improving:	self-stimulatory behaviours ²⁴
Integrated Listening Systems (iLs)	Inconclusive for:	enhancing auditory defensiveness ⁶²

- *Causality cannot be determined using the study design employed to examine Berard Auditory Training¹².
- Small sample sizes and other design weaknesses across all studies limit the generalisability of results.
- It is possible that some relevant studies were missed by the REA.
- No studies in the systematic review completed by Villasenor et al. (2018) ⁵⁶ measured participationlevel outcomes.
- Case study and qualitative methodology, although appropriate for exploration, are weak designs for empirical research³¹.

Cognitive interventions

The REA did not include all cognitive strategies/interventions that may be used in schools.

Cognitive interventions address the way the student thinks about and plans for sensory processing challenges. Any practice that supported the student to use cognitive strategies such as reframing, planning or goal-setting to manage sensory processing challenges was classified as a cognitive intervention. In this review, studies focused on cognitive behavioural therapy and the Alert Program[®] were included.

The REA included two studies looking at cognitive strategies to support self-regulation. Both used a prepost design. The first explored a modified Alert program with 19 participants aged 3-5 years⁸. The other considered the use of a group intervention based on cognitive behavioural therapy (CBT), in which participants were aged 11-16 years¹⁶.

Between the two studies, the evidence was *inconclusive* that teaching regulation skills improves self-regulation skills⁸ or reactivity to sensory stimuli¹⁶.

Practice considerations discussed in the literature

The results of the study examining the modified Alert program indicate that children's vocabulary about selfregulation and ability to recognise feelings can be influenced when the activities and experiences become embedded into the daily routine of the classroom⁸.

Trial considerations

- Teachers are likely to adjust programs and routines⁸.
- Meetings with teachers facilitate collaboration and growth⁸.
- Teacher training and 'buy in' is crucial to success of program⁸.
- Consider communicating with caregivers in ways other than handouts⁸.
- Participants in the 8-week CBT considered the program acceptable¹⁶.

Summary of results

Intervention	Evidence	Outcomes
Modified Alert Program	Inconclusive for:	 improving self-regulation skills ⁸
Cognitive behavioural therapy (CBT)	Inconclusive for:	 improving sensory reactivity ¹⁶

- The cognitive behavioural therapy-based intervention for sensory processing difficulties was delivered over 8 weeks to a group of students with differing sensory needs¹⁶.
- Qualitative evidence reported supports the feasibility of CBT-based sensory intervention as a
 potential psycho-educational therapeutic intervention in schools for young people on the autism
 spectrum¹⁶.
- Questionnaires completed by parents may have limited power to detect the changes in the scenarios that were chosen by the adolescents themselves¹⁶.
- The modified Alert program was delivered over 2 sessions that were not fully attended. The study was not fully achieved⁸.

Multi-sensory environments

Multisensory environments (MSEs) are spaces designed to amplify or attenuate environmental sensory stimuli with the intention of helping users learn and manage sensory stimulation.

Use of MSEs must be considered carefully due to the risk of unintended consequences.

There are number of factors that are essential to consider before using multisensory environments, as use could cause harm and/or lost learning opportunities.

This document does not provide information about using a multi-sensory environment appropriately or safely.

The REA included seven studies looking at multi-sensory environments.

The evidence for MSEs is not strong enough to support wide-spread adoption¹¹.

MSEs *may* help to reduce distress or anxiety (however this needs to be determined at an individual level, considering the student's history and preferences) and improve student wellbeing. However, results between studies were mixed.

The evidence was *inconclusive* for MSE effect for:

- reducing challenging behaviour
- reducing stereotypical behaviour
- behaviour generally
- aggressive behaviours.

MSEs were found to be *ineffective* for enhancing attention and performance in class.

When MSEs were examined for a relationship with reducing restrictive practices, the evidence was:

- *inconclusive* to support MSEs reducing distress; restraint and seclusion; and aggressive behaviours.
- *ineffective* in reducing seclusion rates.

MSEs are not recommended as a strategy to reduce the use of restraint and seclusion.

Practice considerations discussed in the literature

Occupational therapists and other appropriate specialist support staff should work with stakeholders to identify and address sensory elements that contribute to anxiety or maladaptive behaviours.

Schools should consider carefully before proceeding with using MSEs.

Preliminary support was found for the use of MSEs in *clinical settings* to reduce anxiety and challenging behaviours¹¹.

Safety issues and contraindications

- Potential for incorrect use or misuse leading to occupational deprivation, lost learning opportunities or restrictive practices.
- Students must not be left unsupervised.

Trial considerations

- Effects of MSEs are not necessarily universal¹¹.
- Multiple study participants expressed a clear dislike of multisensory environments¹¹.

Summary of results

Intervention	Evidence	Outcomes
Multi-sensory environment/ magic room/ sensory room	Effective for:	 reducing anxiety and challenging behaviour in people with intellectual and developmental disabilities in clinical settings¹¹ improving student wellbeing²¹ increasing attention⁵³ fewer and shorter vocalisations and less and shorter stereotyped/idiosyncratic speech ⁵³ reducing distress in adolescents with a history of aggression^{59*}
	Inconclusive for:	 effect on child behaviours³⁰ for reducing: stereotyped behaviour²⁷ distress⁴⁹ restraint and seclusion⁴⁹ aggressive behaviours⁴⁹
	Ineffective for:	 change in speech⁵³ reducing seclusion rates⁵⁹

- Most studies relied on behavioural observations to measure outcomes¹¹.
- Studies were carried out in non-school settings, e.g. residential care, clinic, dental facilities¹¹.
- All studies had small sample sizes and few used adequate control conditions¹¹.

Physical activity breaks and yoga

In the REA, physical activity breaks and yoga were considered a proprioceptive practice. Proprioceptive practices focus on one's sense of movement and knowledge of body position.

The application and outcomes of studies included in the REA are very limited when considering the nature of possible use in schools.

Practice considerations discussed in the literature

Studies in the REA reported:

- continuous low intensity posturing and positioning activities in the classroom using a stability ball *may* be more effective than either short physical activity breaks or no physical activity during class time³⁷.
- evidence for slow linear swinging is insufficient with respect to immediate effects on attention (when used before tabletop activities it should not be expected to immediately improve attention of preschoolers with autism) ⁹.
- One study supports the use of yoga to enhance educational participation²⁵.

Summary of results

Intervention	Evidence	Outcomes
Physical activity breaks	Ineffective for:	 improving maths scores³⁷
Slow, linear swinging	Inconclusive for:	 task behaviour⁹
Yoga	Effective for improving:	 classroom communication engagement in school²⁵

Sensory-based interventions

The REA considered a range of sensory-based interventions. This chapter focuses on the deep pressure and proprioceptive technique and sensory diets. Sensory interventions can also be found in other chapters.

There is substantial empirical literature on sensory-based interventions for children with disabilities². Based on the available evidence, *insufficient evidence exists* to support their use², with some authors suggesting that sensory-based treatments are more likely to be ineffective than effective⁶.

Therapists must make critical and conscientious decisions regarding the of the sensory-based intervention approaches carefully monitor their use with students⁴³.

Deep pressure proprioceptive technique

Wilbarger's deep pressure and proprioceptive technique (DPPT) uses a sensory-based technique along with sensory-diet activities throughout the day.

Practice considerations discussed in the literature

- DPPT is not designed for the school context.
- DPPT needs to be carried out with careful monitoring and requires detailed home programs to support the family. Occupational therapists need to be aware of the difficulties involved in intensive intervention programs such as DPPT for parents/carers before prescribing them⁷.
- Cost-effectiveness of such programs also needs to be considered as it involves weekly monitoring by the therapist⁷.

Summary of results

Intervention	Evidence	Outcomes
Deep pressure proprioceptive technique (DPPT)	Inconclusive for:	 improving development, participation and occupational performance³ reducing sensory defensiveness⁷

Interpreting the results

• Both studies reviewing DPPT had very small sample sizes (2 and 5 respectively) and other design flaws that impact the validity and reliability of results.

Sensory diets

Sensory diets include any multisensory or sensorimotor activity or set of activities designed to support the needs of a child or group of children. It could include providing specific, planned and purposeful sensory activities, augmenting learning activities with sensory elements or sensory-based play.

In this review, any practice that provided a prescribed set of sensory or sensorimotor activities to support learning was classified as a sensory diet.

The REA included 9 studies evaluating sensory diets. Studies involved preschool and primary school aged children.

Overall, evidence for sensory diets was *inconclusive*.

Practice considerations discussed in the literature

- Guiding educational teams to understand the causes of a child's problematic behaviours are important for framing individualised interventions to address challenges in daily routines^{5,60}.
- Targeted sensory opportunities *may* support engagement in learning for some students with autism and intellectual disability^{38,40,41}.
- Embedding sensorimotor strategies in activity allows the students to stay in the natural classroom environment and participate with their peers in a way that does not exclude them⁵.

Trial considerations

- Sensory activities *may* result in observable but inconsistent changes, or work for some students but not others^{4,5,33}.
- Sensorimotor strategies are a simple and cost-effective option for modifying activities for all students^{5,33,58}.
- Teachers need to be involved in the selecting interventions and closely collaborate with specialist support staff who work with the teacher to develop a safe protocol and use with each student⁴³.
- Sensory tools need to be carefully matched to the needs of the child to ensure it optimises their attention and performance in class^{55,58}.

Summary of results

Intervention	Evidence	Outcomes
Comprehensive sensory integration-based sensory diet	Inconclusive	efficacy of sensory-based treatments for children with disabilities ²
Sensorimotor interventions	Inconclusive for:	 enhance in-seat behaviour⁵ attention⁵ improving student engagement⁵
Sensory motor activities chosen based on behaviours	Inconclusive:	that sensory motor activities reduce activity levels ³³
Sensory Activity Schedule (SAS)	Effective for: Inconclusive for:	 improving cognitive strategy use with strategies: involvement attention sensory perception planning and organisation^{40,41} improving in classroom task performance^{38, 39} on-task behaviour⁴
Brainworks program	Effective for:	 improving sensory processing and behaviour⁶⁰

- Many of the studies investigating sensory interventions used a small sample size, or had other methodological flaws that limit generalisation to other settings^{4,5,38,39,40,41,60}.
- SAS is teacher directed, implementation may have varied between teachers^{40,41}.

Visual strategies

Visual practices focus on either enhancing visual stimuli (e.g., enhancing lighting) or reducing visual distractions (e.g., removing visual displays). They aim to support students to process visual cues effectively.

Three studies examined practices that aimed to address difficulties processing visual stimuli. All practices focussed on modifications to the physical environment and included adjustments to lighting types and intensities, and reduction of visual displays.

Overall, evidence for adjusting lighting was *inconclusive*.

Reducing visual displays is effective in increasing students' attention levels²⁶.

Practice considerations discussed in the literature

- No visual background displays increase attention levels²⁶.
- A clear effect was found for the presence of visual displays on attention for all children. Students spent more time looking at the background in high levels of classroom visual displays compared with no visual display²⁶.
- The presence of visual displays had a much greater effect for children with autism¹⁵.
- Beneficial effects on task engagement were reported for using modified lighting, including black light and halogen lights^{15,31}
- Students reported that sensory comfort in a classroom improves attention, engagement, mood, and performance³¹

Summary of results

Intervention	Evidence	Outcomes
Adjusting lighting	Inconclusive for:	on-task behaviour ¹⁵
Using halogen lighting	Inconclusive for:	improving classroom behaviours ³¹
No visual displays	Effective for:	increasing attention levels for autistic children ²⁶

- The impact physical environment modifications have on engagement and learning outcomes in individuals with autism requires further investigation¹⁵
- Although the results were inconclusive, they trended toward a positive effect¹⁵
- The systematic review may have missed some relevant studies¹⁵
- Study designs tended to be weak, using small sample sizes^{26,31}.

Weighted products

In the REA, weighted products were considered a proprioceptive practice. Proprioceptive practices focus on one's sense of movement and knowledge of body position.

Studies in the REA considered the effects of weighted vests in the classroom or school environment.

In the last 10 years **no studies report positive effects** of weighted vests for improving in-seat and on-task behaviour in the classroom for any student group.

There is *insufficient evidence* in the literature to draw a conclusion regarding other weighted items including blankets, cushions and toys.

Practice considerations discussed in the literature

- Caution must be used in generalising the use of weighted vests to enhance educational participation in classrooms²⁵.
- Taylor et al. (2017) reported that using weighted vests with individuals with autism is not an evidence based practice⁵¹.
- The evidence for the effectiveness of weighted vests with children with ADHD is limited, and it is insufficient for children with autism⁹.
- An intervention being popular does not equate to effectiveness⁵¹.

Safety issues and contraindications

• The lack of an established intervention protocol strengthens the need to use the intervention with close clinical observation and systematic data collection¹³.

Trial considerations

- Weighted vests *may* be a component of intervention for some children, but current evidence does
 not support use in isolation to improve attention to task or sitting in children with autism in the
 classroom setting²⁸.
- Weighted vests should be used in conjunction with a carefully designed and implemented process of data gathering and analysis¹³.

Summary of results

Intervention	Evidence	Outcomes
Weighted vests	Ineffective for:	Improving attention ¹³ (or inconclusive ⁹)
		• in-seat behaviour ^{25, 51}
		 on-task behaviour^{25, 51}
		 task behaviour and sitting time²⁸
		 classroom behaviour³⁴
		 reducing participants stereotypy⁵⁷
		academic productivity ³⁴

Interpreting the results

In one study, objective data demonstrated that effects of weighted vests were not strong or consistent across participants. However, subjectively school staff in this study reported that weighted vests were effective in improving classroom behaviours in all participants some of the time, and a desire to continue using weighted vests²⁸.

Reference List

- 1. Ayadhi, Laila Y. Al, Drees, Abdul Majeed Al, & Arfaj, Ahmed M. Al. (2013). Effectiveness of auditory integration therapy in autism spectrum disorders--prospective study. *Autism Insights*, 13+.
- Barton, Erin E., Reichow, Brian, Schnitz, Alana, Smith, Isaac C., & Sherlock, Daniel. (2015). A systematic review of sensory-based treatments for children with disabilities. *Research in Developmental Disabilities, 37*, 64-80. <u>https://doi.org/10.1016/j.ridd.2014.11.006</u>
- 3. Benson, Jeryl D., Beeman, Emily, Smitsky, Debbie, & Provident, Ingrid. (2011). The Deep Pressure and Proprioceptive Technique (DPPT) Versus Nonspecific Child-Guided Brushing: A Case Study. *Journal of Occupational Therapy, Schools, & Early Intervention, 4*(3-4), 204-214. <u>https://doi.org/10.1080/19411243.2011.629536</u>
- Benson, Jeryl D., Blaskowitz, Meghan G., Collins, Aleyna, Smitsky, Deborah, Chippich, Erica, & Connell, Claire. (2021). The Effect Of A Sensory Activity Schedule (SAS) On The On-Task Behaviors Of Children With Autism Spectrum Disorders. *Journal of Occupational Therapy, Schools, & Early Intervention*, 1-16. <u>https://doi.org/10.1080/19411243.2021.2003734</u>
- Benson, Jeryl D., Donoso Brown, Elena V., Blough, Ashley, & Smitsky, Deborah. (2020). The Effect of Sensorimotor Strategies on Attention and In-Seat Behavior in Preschoolers with Autism Spectrum Disorder: A Pilot Study. *Journal of Occupational Therapy, Schools, & Early Intervention, 13*(3), 236-249. <u>https://doi.org/10.1080/19411243.2020.1732262</u>
- Benson, Jeryl D., Morgus, Kristen, Donoso Brown, Elena, & Smitsky, Deborah. (2019). The Effect of Alternate Seating on Improving Attention and In-seat Behavior of Preschoolers with Autism: A Pilot Study. *Journal of Occupational Therapy, Schools, & Early Intervention, 12*(4), 455-465. <u>https://doi.org/10.1080/19411243.2019.1672606</u>
- Bhopti, Anoo, & Brown, Ted. (2013). Examining the Wilbargers' Deep Pressure and Proprioceptive Technique for Treating Children with Sensory Defensiveness Using a Multiple-Single-Case Study Approach. *Journal of Occupational Therapy, Schools, & Early Intervention, 6*(2), 108-130. <u>https://doi.org/10.1080/19411243.2013.810944</u>
- Blackwell, Angela Labrie, Yeager, Danielle C., Mische-Lawson, Lisa, Bird, Ryan J., & Cook, Donna Marie. (2014). Teaching Children Self-Regulation Skills within the Early Childhood Education Environment: A Feasibility Study. *Journal of Occupational Therapy, Schools, & Early Intervention, 7*(3-4), 204-224. <u>https://doi.org/10.1080/19411243.2014.966013</u>
- Bodison, S. C., & Parham, L. D. (2018). Specific Sensory Techniques and Sensory Environmental Modifications for Children and Youth With Sensory Integration Difficulties: A Systematic Review. Am J Occup Ther, 72(1), 7201190040p7201190041-7201190040p7201190011. https://doi.org/10.5014/ajot.2018.029413
- 10. Brennan, J., & Crosland, K. (2021). Evaluating the Use of Stability Ball Chairs for Children with ASD in a Clinic Setting. *Behav Anal Pract, 14*(4), 1079-1084. <u>https://doi.org/10.1007/s40617-021-00606-3</u>
- Breslin, L., Guerra, N., Ganz, L., & Ervin, D. (2020). Clinical Utility of Multisensory Environments for People With Intellectual and Developmental Disabilities: A Scoping Review. Am J Occup Ther, 74(1), 7401205060p7401205061-7401205060p7401205012. <u>https://doi.org/10.5014/ajot.2020.037267</u>
- 12. Brockett, S. S., Lawton-Shirley, N. K., & Kimball, J. G. (2014). Berard auditory integration training: Behavior changes related to sensory modulation. *Autism Insights*.
- 13. Collins, A., & Dworkin, R. J. (2011). Pilot study of the effectiveness of weighted vests. *Am J Occup Ther, 65*(6), 688-694. <u>https://doi.org/10.5014/ajot.2011.000596</u>
- Crocco, Christina, & Bennett, Kyle D. (2018). Effects of Covert Audio Coaching on the Attending Behavior of Children With Autism Spectrum Disorder. *Focus on Autism and Other Developmental Disabilities, 34*(3), 131-140. <u>https://doi.org/10.1177/1088357618805083</u>
- Dargue, Nicole, Adams, Dawn, & Simpson, Kate. (2021). Can Characteristics of the Physical Environment Impact Engagement in Learning Activities in Children with Autism? A Systematic Review. *Review Journal of Autism and Developmental Disorders, 9*(2), 143-159. <u>https://doi.org/10.1007/s40489-021-00248-9</u>

- 16. Edgington, L., Hill, V., & Pellicano, E. (2016). The design and implementation of a CBT-based intervention for sensory processing difficulties in adolescents on the autism spectrum. *Research in Developmental Disabilities*, *59*, 221-233.
- 17. Erwin, Heather E., Fedewa, Alicia, Ahn, Soyeon, & Thornton, Michelle. (2016). Elementary Students' Physical Activity Levels and Behavior When Using Stability Balls. *The American Journal of Occupational Therapy, 70*(2), 700220010p700220011-700220010p700220017. https://doi.org/10.5014/ajot.2016.017079
- Fedewa, A., Davis, M. A., & Ahn, S. (2015). Effects of Stability Balls on Children's On-Task Behavior, Academic Achievement, and Discipline Referrals: A Randomized Controlled Trial. Am J Occup Ther, 69(2), 6902220020p6902220021-6902220029. <u>https://doi.org/10.5014/ajot.2015.014829</u>
- Fedewa, A., Davis, M. A., & Ahn, S. (2015). Effects of Stability Balls on Children's On-Task Behavior, Academic Achievement, and Discipline Referrals: A Randomized Controlled Trial. *Am J Occup Ther*, 69(2), 6902220020p6902220021-6902220029. <u>https://doi.org/10.5014/ajot.2015.014829</u>
- Fedewa, Alicia L., & Erwin, Heather E. (2011). Stability Balls and Students With Attention and Hyperactivity Concerns: Implications for On-Task and In-Seat Behavior. *The American Journal of Occupational Therapy*, 65(4), 393-399.
- Garzotto, Franca, Beccaluva, Eleonora, Gianotti, Mattia, & Riccardi, Fabiano. (2020). Interactive Multisensory Environments for Primary School Children. Paper presented at the Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA. <u>https://doi.org/10.1145/3313831.3376343</u>
- 22. Gaston, Anca, Moore, Sherri, & Butler, Leslie. (2016). Sitting on a stability ball improves attention span and reduces anxious/depressive symptomatology among grade 2 students: A prospective case-control field experiment. *International Journal of Educational Research*, 77, 136-142. <u>https://doi.org/10.1016/j.ijer.2016.03.009</u>
- 23. Gee, Bryan, Thompson, Kelly, Pierce, Aaron, Toupin, Megan, & Holst, Jennifer. (2015). The effectiveness of auditory stimulation in children with autism spectrum disorders: A case–control study. *International Journal of Therapy and Rehabilitation*, 22(1), 36-46. <u>https://doi.org/10.12968/ijtr.2015.22.1.36</u>
- Gee, B. M., Thompson, K., & St John, H. (2014). Efficacy of a sound-based intervention with a child with an autism spectrum disorder and auditory sensory over-responsivity. *Occup Ther Int, 21*(1), 12-20. <u>https://doi.org/10.1002/oti.1359</u>
- 25. Grajo, L. C., Candler, C., & Sarafian, A. (2020). Interventions within the scope of occupational therapy to improve children's academic participation: a systematic review. *The American Journal of Occupational Therapy*, *74*(2), 7402180030p1-7402180030p32.
- Hanley, M., Khairat, M., Taylor, K., Wilson, R., Cole-Fletcher, R., & Riby, D. M. (2017). Classroom displays-Attraction or distraction? Evidence of impact on attention and learning from children with and without autism. *Dev Psychol*, *53*(7), 1265-1275. <u>https://doi.org/10.1037/dev0000271</u>
- 27. Hill, Lindsay, Trusler, Karen, Furniss, Frederick, & Lancioni, Giulio E. (2012). Effects of multisensory environments on stereotyped behaviours assessed as maintained by automatic reinforcement. *Journal of applied research in intellectual disabilities: JARID, 25 6*, 509-521.
- 28. Hodgetts, Sandra, Magill-Evans, Joyce, & Misiaszek, John. (2011). Effects of weighted vests on classroom behavior for children with autism and cognitive impairments. *Research in Autism Spectrum Disorders, 5*(1), 495-505. <u>https://doi.org/10.1016/j.rasd.2010.06.015</u>
- 29. Ikuta, Nobuhiko, Iwanaga, Ryoichiro, Tokunaga, Akiko, Nakane, Hideyuki, Tanaka, Koji, & Tanaka, Goro. (2016). Effectiveness of Earmuffs and Noise-cancelling Headphones for Coping with Hyper-reactivity to Auditory Stimuli in Children with Autism Spectrum Disorder: A Preliminary Study. *Hong Kong Journal of Occupational Therapy*, *28*(1), 24-32. <u>https://doi.org/10.1016/j.hkjot.2016.09.001</u>
- 30. Kim, M. K., & Park, N. K. (2022). Evaluating the Impact of a Multisensory Environment on Target Behaviors of Children With Autism Spectrum Disorder. *Herd*, 15(2), 163-179. <u>https://doi.org/10.1177/19375867211050686</u>

- Kinnealey, M., Pfeiffer, B., Miller, J., Roan, C., Shoener, R., & Ellner, M. L. (2012). Effect of classroom modification on attention and engagement of students with autism or dyspraxia. *Am J Occup Ther*, 66(5), 511-519. <u>https://doi.org/10.5014/ajot.2012.004010</u>
- Krombach, T., & Miltenberger, R. (2020). The Effects of Stability Ball Seating on the Behavior of Children with Autism During Instructional Activities. J Autism Dev Disord, 50(2), 551-559. <u>https://doi.org/10.1007/s10803-019-04283-8</u>
- Lin, C. L., Min, Y. F., Chou, L. W., & Lin, C. K. (2012). Effectiveness of sensory processing strategies on activity level in inclusive preschool classrooms. *Neuropsychiatr Dis Treat, 8*, 475-481. <u>https://doi.org/10.2147/ndt.S37146</u>
- 34. Macphee, Fiona L., Merrill, Brittany M., Altszuler, Amy R., Ramos, Marcela C., Gnagy, Elizabeth M., Greiner, Andrew R., . . . Pelham, William E. (2019). The Effect of Weighted Vests and Stability Balls With and Without Psychostimulant Medication on Classroom Outcomes for Children With ADHD. School Psychology Review, 48(3), 276-289. <u>https://doi.org/10.17105/SPR-2017-0151.V48-3</u>
- 35. Matin Sadr, Nader, Haghgoo, Hojjat Allah, Samadi, Sayyed Ali, Rassafiani, Mehdi, & Bakhshi, Enayatollah. (2015). Can Air Seat Cushions and Ball Chairs Improve Classroom Behaviors of Students with Autism Spectrum Disorder: A Single Subject Study. *Journal of Rehabilitation Sciences & Research*, 2(2), 31-36. <u>https://doi.org/10.30476/jrsr.2015.41071</u>
- 36. Matin Sadr, N., Haghgoo, H. A., Samadi, S. A., Rassafiani, M., Bakhshi, E., & Hassanabadi, H. (2017). The Impact of Dynamic Seating on Classroom Behavior of Students with Autism Spectrum Disorder. *Iran J Child Neurol*, 11(1), 29-36.
- 37. Mead, T., et al. (2016). The Impact of Stability Balls, Activity Breaks, and a Sedentary Classroom on Standardized Math Scores. *The Physical educator, 73*(3): 433-449.
- Mills, Caroline, & Chapparo, Christine. (2017). Use of Perceive, Recall, Plan, Perform Stage Two Cognitive Task Analysis for students with autism and intellectual disability: The impact of a sensory activity schedule. *Journal of Occupational Therapy, Schools, & Early Intervention, 10*(3), 232-253. <u>https://doi.org/10.1080/19411243.2017.1335262</u>
- 39. Mills, Caroline, Chapparo, Christine, & Hinitt, Joanne. (2016). The impact of an in-class sensory activity schedule on task performance of children with autism and intellectual disability: A pilot study. *British Journal of Occupational Therapy*, *79*(9), 530-539. <u>https://doi.org/10.1177/0308022616639989</u>
- 40. Mills, C. J., Chapparo, C., & Hinitt, J. (2020). The impact of sensory activity schedule (SAS) intervention on classroom task performance in students with autism–a pilot randomised controlled trial. *Advances in Autism*. <u>https://doi.org/10.1108/aia-05-2019-0015</u>
- 41. Mills, Caroline J, Chapparo, Christine, & Hinitt, Joanne. (2021). Impact of a sensory activity schedule intervention on cognitive strategy use in autistic students: A school-based pilot study. *British Journal of Occupational Therapy, 84*(12), 775-784. <u>https://doi.org/10.1177/0308022620982888</u>
- Olson, Natasha A., Panahon, Carlos J., & Hilt-Panahon, Alexandra. (2019). Investigating the Effects of Stability Balls on Classwide Student Behavior and Academic Productivity. *Journal of Applied School Psychology*, 35(3), 201-214. <u>https://doi.org/10.1080/15377903.2018.1549175</u>
- Ouellet, Béatrice, Carreau, Emmanuelle, Dion, Valérie, Rouat, Anouk, Tremblay, Elyse, & Voisin, Julien I. A. (2021). Efficacy of Sensory Interventions on School Participation of Children With Sensory Disorders: A Systematic Review. *American Journal of Lifestyle Medicine*, 15(1), 75-83. <u>https://doi.org/10.1177/1559827618784274</u>
- Pfeiffer, B., Stein Duker, L., Murphy, A., & Shui, C. (2019). Effectiveness of Noise-Attenuating Headphones on Physiological Responses for Children With Autism Spectrum Disorders. *Front Integr Neurosci, 13*, 65. <u>https://doi.org/10.3389/fnint.2019.00065</u>
- 45. Piragasam, G. A., Rabi, N. M., & Masnan, A. H. (2018). The use of sensory balls in the classroom: effects on behavioural and academic functioning of students with learning disabilities. *International Journal of Academic Research in Business and Social Sciences*, *8*(4).
- Rance, Gary, Chisari, Donella, Saunders, Kerryn, & Rault, Jean-Loup. (2017). Reducing Listening-Related Stress in School-Aged Children with Autism Spectrum Disorder. *Journal of Autism and Developmental Disorders*, 47(7), 2010-2022. <u>https://doi.org/10.1007/s10803-017-3114-4</u>

- 47. Rance, G., Saunders, K., Carew, P., Johansson, M., & Tan, J. (2014). The use of listening devices to ameliorate auditory deficit in children with autism. *J Pediatr, 164*(2), 352-357. https://doi.org/10.1016/j.jpeds.2013.09.041
- Schafer, E. C., Mathews, L., Mehta, S., Hill, M., Munoz, A., Bishop, R., & Moloney, M. (2013). Personal FM systems for children with autism spectrum disorders (ASD) and/or attention-deficit hyperactivity disorder (ADHD): an initial investigation. *J Commun Disord*, *46*(1), 30-52. <u>https://doi.org/10.1016/j.jcomdis.2012.09.002</u>
- 49. Seckman, A., Paun, O., Heipp, B., Van Stee, M., Keels-Lowe, V., Beel, F., . . . Delaney, K. R. (2017). Evaluation of the use of a sensory room on an adolescent inpatient unit and its impact on restraint and seclusion prevention. *J Child Adolesc Psychiatr Nurs*, *30*(2), 90-97. <u>https://doi.org/10.1111/jcap.12174</u>
- Sotoodeh, M. S., Arabameri, E., Panahibakhsh, M., Kheiroddin, F., Mirdoozandeh, H., & Ghanizadeh, A. (2017). Effectiveness of yoga training program on the severity of autism. *Complement Ther Clin Pract, 28*, 47-53. <u>https://doi.org/10.1016/j.ctcp.2017.05.001</u>
- Taylor, Christopher J., Spriggs, Amy D., Ault, Melinda Jones, Flanagan, Sara, & Sartini, Emily C. (2017). A systematic review of weighted vests with individuals with autism spectrum disorder. *Research in Autism Spectrum Disorders, 37*, 49-60. <u>https://doi.org/10.1016/j.rasd.2017.03.003</u>
- Umeda, Caroline, & Deitz, Jean. (2011). Effects of Therapy Cushions on Classroom Behaviors of Children With Autism Spectrum Disorder. *The American Journal of Occupational Therapy, 65*(2), 152-159. <u>https://doi.org/10.5014/ajot.2011.000760</u>
- Unwin, K. L., Powell, G., & Jones, C. R. (2022). The use of Multi-Sensory Environments with autistic children: Exploring the effect of having control of sensory changes. *Autism, 26*(6), 1379-1394. <u>https://doi.org/10.1177/13623613211050176</u>
- 54. van der Kruk, Yolanda, Wilson, Wayne, Perrykkad, Kelsey, Downing, Cerys, Harper-Hill, Keely, & Ashburner, Jill. (2017). Improved Signal-to-Noise Ratio and Classroom Performance in Children with Autism Spectrum Disorder: a Systematic Review. *Review Journal of Autism and Developmental Disorders, 4*. <u>https://doi.org/10.1007/s40489-017-0111-7</u>
- 55. van der Wurff, I., Meijs, C., Hurks, P., Resch, C., & de Groot, R. (2021). The influence of sensory processing tools on attention and arithmetic performance in Dutch primary school children. *J Exp Child Psychol, 209*, 105143. <u>https://doi.org/10.1016/j.jecp.2021.105143</u>
- 56. Villasenor, Romana F., Smith, Sarah L., & Jewell, Vanessa D. (2018). A systematic review of soundbased intervention programs to improve participation in education for children with sensory processing and integration challenges. *Journal of Occupational Therapy, Schools, & Early Intervention, 11*(2), 172-191. <u>https://doi.org/10.1080/19411243.2018.1432444</u>
- 57. Watkins, N., & Sparling, E. (2014). The effectiveness of the Snug Vest on stereotypic behaviors in children diagnosed with an autism spectrum disorder. *Behavior Modification*. <u>https://doi.org/10.1177/0145445514532128</u>
- 58. Weitlauf, A. S., Sathe, N., McPheeters, M. L., & Warren, Z. E. (2017). Interventions targeting sensory challenges in autism spectrum disorder: a systematic review. *Pediatrics*, *139*(6).
- 59. West, M., Melvin, G., McNamara, F., & Gordon, M. (2017). An evaluation of the use and efficacy of a sensory room within an adolescent psychiatric inpatient unit. *Australian Occupational Therapy Journal, 64*(3), 253-263. <u>https://doi.org/10.1111/1440-1630.12358</u>
- 60. Wild, G., & Steeley, S. L. (2018). A Model for Classroom-Based Intervention for Children with Sensory Processing Differences. *International Journal of Special Education*, *33*(3), 745-765.
- Wilson, Wayne J., Harper-Hill, Keely, Armstrong, Rebecca, Downing, Cerys, Perrykkad, Kelsey, Rafter, Mary, & Ashburner, Jill. (2021). A preliminary investigation of sound-field amplification as an inclusive classroom adjustment for children with and without Autism Spectrum Disorder. *Journal of Communication Disorders*, 93, 106142. <u>https://doi.org/10.1016/j.jcomdis.2021.106142</u>
- Zachry, Anne H., Lancaster, Stephanie, & Robertson, Ellen M. (2019). Effect of a Sound-Based Intervention on a 7-Year-Old Child Diagnosed With Auditory Processing Disorder. *Annals of International Occupational Therapy*, 2(2), 91-100. <u>https://doi.org/10.3928/24761222-20181116-02</u>

Appendix A: Summary of study findings

Listed alphabetically by intervention

Intervention	Population	Age	Evidence	Study
Auditory integration training *Auditory training	Autism	Preschool, Primary and Secondary Up to 17 years	Effective in improving social awareness, social cognition, and social communication as well as speech, communication and sociability.	Al-Ayadhi, L. Y., Majeed Al- Drees, A., & Al-Arfaj, A. M. (2013).
Auditory integration- based approaches (e.g. filtered sound) Music therapy *Auditory training	Autism	Preschool and Primary 2–12 years	Ineffective for auditory integration-based approaches on language outcomes.	Weitlauf, A. S., Sathe, N., McPheeters, M. L., & Warren, Z. E. (2017). <i>Systematic Review</i>
Background noise Sound attenuation *Auditory mod	Autism	Not stated	Inconclusive effects for on-task behaviour.	Dargue, N., Adams, D., & Simpson, K. (2021). <i>Systematic Review</i>
Beard Auditory Training *Auditory training	Autism (n=34), PDD- NOS, speech language delay or ADD	Preschool and Primary 3–10 years	Effective in improving behaviours including social and motor skills.	Brockett, S. S., Lawton- Shirley, N. K., & Kimball, J. G. (2014).
Brainworks program Sensory breaks, sensory equipment and modifications to classroom. *Sensory diet	Sensory modulation disorder	Preschool and Primary Not specified. Pre-K- grade 6 discussed	Brainworks program was Effective in improving sensory processing and behaviour.	Wild, G., & Steeley, S. L. (2018).

Intervention	Population	Age	Evidence	Study
Cognitive behavioural therapy (CBT)	Autism	Primary and Secondary 11–16 years	Inconclusive evidence that CBT improves sensory reactivity.	Edgington, L., Hill, V., & Pellicano, E. (2016).
Common classroom chairs, air-sit cushion and ball chairs *Seating	Autism	Primary 7–10 years	Inconclusive evidence that air sit cushions and ball chairs improved in-seat and on-task behaviour	Sadr, N. M, Haghgoo, H. A., Samadi, S. A., Rassafiani, M., & Bakhshi, E. (2015).
Comprehensive sensory integration- based *Sensory diet	Sensory integration disorder Autism Developmental delay Down Syndrome Cerebral Palsy Other motor impairments ADHD	Preschool and Primary Mean age of group design studies – 82.9 months Mean age of single case design studies – 67.8 months	Inconclusive for comprehensive sensory integration-based	Barton, E. E., Reichow, B., Schnitz, A., Smith, I. C., & Sherlock, D. (2015). <i>Systematic Review</i>
Covert audio coaching *Auditory training	Autism	Primary 6–11 years	Inconclusive for increasing attending behaviour in autistic children in the classroom.	Crocco, C., & Bennett, K. D. (2019)
Deep pressure and proprioceptive technique *Deep pressure	Autism, PDD-NOS	Preschool 5 years	Inconclusive evidence to support DPPT in improving development, participation and occupational performance.	Benson, J. D., Beeman, E., Smitsky, D., & Provident, I. (2011).

Intervention	Population	Age	Evidence	Study
Deep pressure and proprioceptive technique *Deep pressure	Developmental delay in two or more areas or disability from birth to 6 years of age. Sensory defensiveness.	Preschool 3–4 years	Inconclusive evidence to support deep pressure and proprioceptive technique in reducing sensory defensiveness.	Bhopti, A., & Brown, T. (2013).
Dynamic seating (therapy balls) *Seating	Autism	Primary 7–10 years	Inconclusive evidence for dynamic seating improved classroom behaviour	Sadr, N. M., Haghgoo, H. A., Samadi, S. A., Rassafiani, M., Bakhshi, E., & Hassanabadi, H. (2017).
Ear-level remote microphone devices and Classroom amplification systems. *Auditory mod	Autism	Primary and Secondary Study A (n=16, mean age = 9.5y). Study B (n=9, mean age = 14.9y)	Effective in improving speech perception in everyday listening conditions. Effective in reducing listening-related stress in one-on-one and group listening contexts (microphone).	Rance, G., Saunders, K., Carew, P., Johansson, M., & Tan, J. (2014).
Floor seating or alternate seating (T- stool or cube chair) *Seating	Autism	Preschool 4y2m – 4y6m	Ineffective evidence to support floor or alternate seating in enhancing attention and in-seat behaviour.	Benson, J. D., Morgus, K., Donoso Brown, E., & Smitsky, D. (2019).
Halogen lighting *Visual mod	Participants needed to demonstrate classroom- ready behaviours as defined by the school and be free of special health concerns, cognitive impairment, or a psychiatric condition.	Secondary 13–20 years	Inconclusive evidence that sound- absorbing material and halogen lighting improves classroom behaviours.	Kinnealey, M., Pfeiffer, B., Miller, J., Roan, C., Shoener, R., & Ellner, M. L. (2012).

Intervention	Population	Age	Evidence	Study
In-ear (IE) and over- ear (OE) headphones *Auditory mod	Autism	Primary and Secondary 8–16 years	Inconclusive evidence to support headphones reducing sympathetic activation.	Pfeiffer, B., Stein Duker, L., Murphy, A., & Shui, C. (2019).
Integrated Listening Systems (iLs) *Auditory training	Auditory processing disorder and Auditory sensory over- responsivity	Primary 7 years	Inconclusive evidence for integrated listening systems enhancing auditory defensiveness.	Zachry, A. H., Lancaster, S., & Robertson, E. M. (2019).
Lighting *Visual mod	Autism	Not stated	Inconclusive effects for on-task behaviour.	Dargue, N., Adams, D., & Simpson, K. (2021).
Modified Alert Program *Alert	Nil mentioned	Preschool 3–5 years	Inconclusive evidence that the modified alert program improves self-regulation skills.	Blackwell, A. L., Yeager, D. C., Mische-Lawson, L., Bird, R. J., & Cook, D. M. (2014).
Multisensory environments *MSE	People with intellectual and developmental disorders	Preschool, Primary and Secondary Children and older adults	MSE was Effective in reducing anxiety and challenging behaviour in people with IDD. Inconclusive evidence to support widespread adoption due to insufficient study.	Breslin, L., Guerra, N., Ganz, L., & Ervin, D. (2020). <i>Scoping Review</i>
Multisensory environments *MSE	Autism and neurodevelopmental disorder	Primary 7–8 years	MSE was Effective in improving student wellbeing.	Garzotto, F., Beccaluva, E., Gianotti, M., & Riccardi, F. (2020, April)
Multisensory environments *MSE	Autism and severe intellectual disabilities	Secondary 14-year-old F, 18- year-old M	Inconclusive evidence for MSE reducing stereotyped behaviour.	Hill, L., Trusler, K., Furniss, F., & Lancioni, G. (2012).

Intervention	Population	Age	Evidence	Study
Multisensory environments *MSE	Autism	Preschool and Primary 3–12 years	Inconclusive effect on child behaviours.	Kim, M. K., & Park, N. K. (2021).
Multisensory environments *MSE	Acute and chronic emotional and behavioural disorders	Primary and Secondary 12–17 years	Inconclusive evidence to support MSE reducing distress; restraint and seclusion; and aggressive behaviours.	Seckman, A., Paun, O., Heipp, B., Van Stee, M., Keels-Lowe, V., Beel, F., & Delaney, K. R. (2017).
Multisensory environments *MSE	Autism	Preschool and Primary 4–12 years (M=8 years)	MSE were Effective in increasing attention, fewer and shorter vocalisations along with less and shorter stereotyped/idiosyncratic speech. Ineffective on change in speech.	Unwin, K. L., Powell, G., & Jones, C. R. (2021).
Multisensory environments *MSE	Acute and chronic psychiatric problems	Primary and Secondary 12–18 years (mean age 15.35yrs)	MSE were Effective in reducing distress, especially in adolescents with a history of aggression. Ineffective in reducing seclusion rates.	West, M., Melvin, G., McNamara, F., & Gordon, M. (2017).
No visual displays *Visual mod	37 Autism, 52 Typically developing	Preschool, Primary and Secondary Autism (7y10m – 12y9m). Typically developing (5y – 13y3m)	Reducing visual displays is effective in increasing attention levels for autistic children.	Hanley, M., Khairat, M., Taylor, K., Wilson, R., Cole- Fletcher, R. & Riby, D. M. (2017).

Intervention	Population	Age	Evidence	Study
Noise cancelling headphones and earmuffs *Auditory mod	Autism	Preschool, Primary and Secondary 4–16 years (M = 8 years 2 m)	Earmuffs were effective in reducing responses to auditory stimuli and noise cancelling headphones were not effective.	Ikuta, N., Iwanaga, R., Tokunaga, A., Nakane, H., Tanaka, K., & Tanaka, G. (2016).
Personal frequency modulation system *Auditory mod	Autism and ADHD (n=11). Typically functioning (n=11)	Primary 9–12yrs	Personal frequency modulation system was Effective in enhancing speech recognition in noise, on-task behaviours and improved listening behaviours.	Schafer, E. C., Mathews, L., Mehta, S., Hill, M., Munoz, A., Bishop, R., & Moloney, M. (2013).
Physical activity breaks Stability balls *Movement *Seating	Not reported	Primary 11–12 years	Physical activity breaks were Ineffective in improving maths scores. Continuous low- intensity posturing and positioning using a stability ball were Effective in improving student learning.	Mead, T., et al. (2016).
Sensorimotor interventions *Sensory diet	Autism	Preschool 4–5 years	Inconclusive evidence that sensorimotor interventions enhance in-seat behaviour and attention. Inconclusive evidence for improving student engagement.	Benson, J. D., Donoso Brown, E. V., Blough, A., & Smitsky, D. (2020).
Sensorimotor interventions *Sensory diet	Autism	Primary 8–12 years	Inconclusive evidence that sensory strategies improve on-task behaviour of children with autism.	Benson, J. D., Blaskowitz, M. G., Collins, A., Smitsky, D., Chippich, E., & Connell, C. (2021).
Sensory Activity Schedule (SAS) *Sensory diet	Atypical sensory processing	Primary 7.4 years	Effective in improving cognitive strategy use and with strategies involvement attention and sensory perception, and planning and organisation.	Mills, C. J., et al. (2021).

Intervention	Population	Age	Evidence	Study
Sensory Activity Schedule (SAS) *Sensory diet	Autism	Preschool and Primary 4–12 years	Effective in improving cognitive strategy use and with strategies involvement attention and sensory perception, and planning and organisation.	Mills, C. J., Chapparo, C., & Hinitt, J. (2020).
Sensory Activity Schedule (SAS) *Sensory diet	Autism and intellectual disability	Preschool and Primary 5–9 years	Inconclusive evidence supporting improvement in classroom task performance.	Mills, C., & Chapparo, C. (2017).
Sensory Activity Schedule (SAS) *Sensory diet	Autism, intellectual disability, severe language delay	Primary 6–7 years	Inconclusive evidence supporting improvement in classroom task performance.	Mills, C., Chapparo, C., & Hinitt, J. (2016).
Sensory balls *Seating	Learning disabled	Primary 8–12 years	Inconclusive evidence supporting the use of sensory balls in improving on-task and out of seat behaviour.	Piragasam, G. A., Rabi, N. M., & Masnan, A. H. (2018).
Sensory integration based *Seating	Nil reported	Primary 7–8 years	Ineffective evidence to support sensory processing tools enhancing attention and arithmetic performance.	van der Wurff, I., Meijs, C., Hurks, P., Resch, C., & de Groot, R. (2021).
Sensory integration- based Sensory diet Weighted blankets *ASI *Sensory diet *Weighted	Autism	Preschool and Primary 2–12 years	Inconclusive evidence for sensory-based approaches, environmental enrichment approaches, music.	Weitlauf, A. S., Sathe, N., McPheeters, M. L., & Warren, Z. E. (2017). <i>Systematic Review</i>

Intervention	Population	Age	Evidence	Study
Sensory motor activities selected from a list based on the behaviours displayed by the child *Sensory diet	No diagnosis	Preschool and Primary 3–6 years	Inconclusive evidence that sensory motor activities reduce activity levels.	Lin CL, Min YF, Chou LW, Lin CK. (2012)
Signal-to-noise ratio *Auditory mod	Autism	Preschool, Primary and Secondary 5–20 years	Inconclusive evidence that signal-to-noise ratio improved classroom performance in autistic children.	van der Kruk, Y., Wilson, W., Perrkad, K., Downing, C., Harper-Hill, K., & Ashburner, J. (2017). <i>Systematic Review</i>
Snug vest *Deep pressure	Autism	Preschool and Primary 5–6 years	Snug vests were Ineffective at reducing participants stereotypy.	Watkins, N., & Sparling, E. (2014).
Sound absorbing material *Auditory mod	Participants needed to demonstrate classroom- ready behaviours as defined by the school and be free of special health concerns, cognitive impairment, or a psychiatric condition.	Secondary 13–20 years	Inconclusive evidence that sound-absorbing material and halogen lighting improves classroom behaviours.	Kinnealey, M., Pfeiffer, B., Miller, J., Roan, C., Shoener, R., & Ellner, M. L. (2012).
Sound based intervention *Auditory training	Mild-moderate Autism, presence of SOR to auditory stimuli	Preschool and Primary 5–10 years	Inconclusive evidence to support the listening program in improving auditory sensitivity.	Gee, B. M., Thompson, K., & St John, H. (2015).

Intervention	Population	Age	Evidence	Study
Sound field amplification system *Auditory mod	Autism	Primary 7.6 – 9.3 years	Inconclusive evidence to support sound-field amplification to improve teacher-rated listening behaviour and phonological processing.	Wilson, W. J., Harper-Hill, K., Armstrong, R., Downing, C., Perrykkad, K., Rafter, M., & Ashburner, J. (2021).
Sound-based interventions *Auditory training	Children with sensory processing challenges	Preschool, Primary and Secondary 2–19 years	Inconclusive evidence for sound-based interventions improving educational participation and sensory processing.	Villasenor, R. F., Smith, S. L., & Jewell, V. D. (2018). <i>Systematic Review</i>
Stability ball chair *Seating	Autism	Preschool and Primary 4–8 years	Inconclusive evidence to support stability balls enhancing in-seat and on-task behaviour.	Brennan & Crosland (2021)
Stability balls *Seating	Nil reported	Primary Elementary school age (4th graders)	Stability balls are ineffective for classroom behaviour.	Erwin, H. E., Fedewa, A., Ahn, S., & Thornton, M. (2016).
Stability balls *Seating	ADHD	Primary 7–8 years	Stability balls are ineffective in enhancing classroom behaviour or overall performance.	Olson, N. A., Panahon, C. J., & Hilt-Panahon, A. (2019).
Stability balls *seating	ADHD	Primary 9 years 11m (mean age)	Inconclusive evidence that stability balls improve in-seat and on-task behaviour.	Fedewa, A. L., & Erwin, H. E. (2011).
Stability balls *Seating	Nil reported	Primary 7 years	Stability balls were effective for improved attention span and temporarily alleviated anxiety/depressive symptoms. Ineffective on hyperactivity, oppositional defiant behaviours.	Gaston, A., Moore, S., & Butler, L. (2016).
Stability balls *Seating	Autism and intellectual disability	Preschool and Primary 4–12 years	Inconclusive evidence for stability balls improving in-seat behaviours.	Krombach, T., & Miltenberger, R. (2020).

Intervention	Population	Age	Evidence	Study
Study A: Ear-Level Remote Microphone Systems, Study B: Soundfield Classroom Distribution *Auditory mod	Autism	Primary and Secondary 8–15.4 years	Inconclusive evidence to improve listening, communication and social interaction and reduction in physiological stress.	Rance, G., Chisari, D., Saunders, K., & Rault, J. L. (2017).
The Listening Program *Auditory training	Autism + sensory over responsiveness to auditory stimuli	Primary 7 years	Inconclusive evidence that the listening program improves auditory sensitivity and self-stimulatory behaviours.	Gee, B. M., Thompson, K., & St John, H. (2014).
Therapy ball chairs Seat cushions *Visual mod *Auditory mod *Seating	Autism	Not stated	Inconclusive effects on-task behaviour.	Dargue, N., Adams, D., & Simpson, K. (2021). Systematic Review
Therapy cushions *Seating	Autism	Preschool and Primary 5–6 years	Therapy cushions were Ineffective for improving the in-seat and on-task behaviours	Umeda, C., & Deitz, J. (2011).
Vests (weighted or non-weighted) *Weighted	Autism, sensory modulation dysfunction, teacher reported difficulty with attention	Preschool and Primary 3–10 years	Vests were ineffective for task behaviour and sitting time.	Hodgetts, S., Magill-Evans, J., & Misiaszek, J. (2011).
Weighted vests *Weighted	Nil reported	Primary 7–10 years	Weighted vests are ineffective for attention in classroom.	Collins, A., & Dworkin, R. J. (2011).
Weighted Vests *Weighted	Autism	Not listed	Weighted vests were ineffective in improving in-seat behaviour on-task behaviour	Taylor, C. J., Spriggs, A. D., Ault, M. J., Flanagan, S., & Sartini, E. C. (2017).

Intervention	Population	Age	Evidence	Study
Weighted vests Stability balls *Weighted *Seating *Movement	Not stated	Preschool, Primary and Secondary 5– 21 years	Ineffective: weighted vests/ stability balls on in-seat and on-task behaviour.	Grajo, L. C., Candler, C., & Sarafian, A. (2020). <i>Systematic Review</i>
Weighted vests Seating *Weighted *Seating	Sensory integration disorder Autism Developmental delay Down Syndrome Cerebral Palsy Other motor impairments ADHD	Preschool and Primary Mean age of group design studies – 82.9 months Mean age of single case design studies – 67.8 months	Ineffective for weighted vests. Inconclusive for seating.	Barton, E. E., Reichow, B., Schnitz, A., Smith, I. C., & Sherlock, D. (2015). <i>Systematic Review</i>
Weighted vests Stability balls *Seating *Weighted	ADHD	Preschool and Primary 5–12 years	Weighted vests and stability balls were Ineffective for classroom behaviour.	Macphee, F. L., Merrill, B. M., Altszuler, A. R., Ramos, M. C., Gnagy, E. M., Greiner, A. R., Pelham, W. E. (2019).
Weighted vests Therapy balls Air cushions Platform swings Activity breaks Ayres Sensory Integration® *Seating *Weighted *Movement *ASI	Nil listed	Preschool, Primary and Secondary Not specified, inclusion criteria, 4– 17 years	Inconclusive on sensory intervention modalities related to sensory-based, sensorimotor and sensory integration.	Ouellet, B., Carreau, E., Dion, V., Rouat, A., Tremblay, E., & Voisin, J. I. (2021). <i>Systematic Review</i>

Intervention	Population	Age	Evidence	Study
Weighted vests, slow swinging, incorporation of multisensory activities into preschool routines *Weighted *Movement *Sensory diet	Autism	Not specified	Inconclusive evidence to support weighted vests on attention, slow linear swinging on task behaviour and embedding tactile, proprioceptive, and vestibular activities in preschool on play skills.	Bodison, S. C., & Parham, L. D. (2018). <i>Systematic Review</i>
Yoga	Not stated	Preschool, Primary and Secondary 5– 21 years	Effective: Yoga to improve classroom communication and engagement in school.	Grajo, L. C., Candler, C., & Sarafian, A. (2020). <i>Systematic Review</i>